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Abstract
We study the effects of Coulomb interaction and inter-grain quantum tunnelling
in an array of metallic grains using the phase-functional approach for
temperatures T well below the charging energy Ec of individual grains yet
large compared to the level spacing in the grains. When the inter-grain
tunnelling conductance g � 1, the conductivity σ in d dimensions decreases
logarithmically with temperature (σ/σ0 ∼ 1 − 1

πgd ln(gEc/T )) (Panyukov and
Zaikin 1991 Phys. Rev. Lett. 67 3168, Goppert and Grabert 2000 Eur. Phys. J. B
16 687, Efetov and Tschersich 2002 Europhys. Lett. 59 114), while for g → 0,
the conductivity shows simple activated behaviour (σ ∼ exp(−Ec/T )). We
show, for bare tunnelling conductance g � 1, that the parameter γ ≡
g(1 − 2/(gπ) ln(gEc/T )) determines the competition between charging and
tunnelling effects. At low enough temperatures in the regime 1 � γ �
1/

√
βEc, a charge is shared among a finite number N = √

(Ec/T )/ ln(π/2γ z)
of grains, and we find a soft activation behaviour of the conductivity, σ ∼
z−1 exp(−2

√
(Ec/T ) ln(π/2γ z)), where z is the effective coordination number

of a grain.

1. Introduction

Coulomb effects and electron tunnelling, as well as various effects of disorder, are major
themes of mesoscopic physics. For a single metallic grain, all these effects have been explored
extensively. For an array of normal metal grains, we find a peculiar interplay of electron
charging and tunnelling effects manifested by a formation of a multi-grain charge excitation.

The novelty of granular metal systems in comparison with disordered metals or
semiconductors with impurities arises from the presence of additional energy scales—the
grain charging energy Ec [4] and intra-grain energy-level spacing δ. When the temperature
is lowered below level spacing δ, electrons in the granular metal can propagate (diffuse or
hop over many grains) coherently just like in a disordered metal. In the incoherent regime
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T > max(gδ, δ), only charging effects and nearest-neighbour hopping (in the second order of
the tunnelling matrix element) are relevant, and it is possible to formulate the problem in terms
of longitudinal electromagnetic phase (or voltage) fluctuations on the grains [3, 5]. For large
inter-grain conductance g � 1, the conductivity decreases logarithmically with temperature
independent of dimensionality [1–3], reminiscent of many experiments [6–8]. The essential
physics of this result was recognized some time ago as washed out Coulomb blockade for
the quantum dot coupled to a conductive environment [9, 10]. For intermediate conductance
g � 1 (and sufficiently low temperature), we derive within the same approach a soft activation
conduction (σ ∼ e−√

T0/T ) by a charge excitation (later referred to as a ‘puddle’) shared
between many grains due to incoherent tunnelling. In the itinerant (or large-scale diffusion
over many grains) regime at low temperatures T < max(gδ, δ), the granular metal for large
conductance g � 1 is naturally described by Altshuler–Aronov theory [11, 12].

We employ the phase functional approach suggested over two decades ago by Ambegaokar,
Eckern and Schön (AES) [5]. The original model described the tunnelling dynamics of granular
superconductors, but nowadays this approach is increasingly used to study granular metals as
well [3, 12, 13]. The AES action SAES for granular metals consists of two contributions,
SAES = Sc + St , where

Sc = 1

2

∑
i,j

∫ β

0
dτ Cij

dφ̃i(τ )

dτ

dφ̃ j(τ )

dτ
(1)

represents charging of the grains, and

St = πg
∑

|i−j|=a

∫ β

0
dτ dτ ′ α(τ − τ ′) sin2

(
φ̃ij(τ )− φ̃ij(τ

′)
2

)
(2)

represents tunnelling between neighbouringgrains, φ̃ij = φ̃i−φ̃j. The kernelα(τ) has the form
α(τ) = T 2(Re(sin(πT τ + iε))−1)2. The fields {φ̃i} are electromagnetic phase fluctuations on
the grains related to the respective potential fluctuations {Vi} through Vi(τ ) = ∂τ φ̃i(τ ). They
satisfy bosonic boundary conditions, φ̃i(τ ) = 2πki

β
τ + φi(τ ), φi(τ ) = φi(τ + β), where the

winding number ki is an integer, and −∞ < φi(τ ) < ∞. The tunnelling conductance g is
related to the inter-grain hopping amplitude ti,i+a through g = 2π |ti,i+a|2/δ2. Conductivity
in the AES model is a second order (in hopping amplitude) incoherent tunnelling process
between neighbouring grains. The elastic tunnelling lifetime τ of the electron on the grain is
τ = h̄/(gδ). The condition, defining the granularity of the material and allowing averaging
over fermionic intra-grain states, is that the tunnelling lifetime τ is much longer than the
Thouless diffusion time l2/D (where D is an intra-grain diffusion coefficient and l is the size
of a grain). Another relevant condition is the implicit requirement of energy relaxation in the
grains. The characteristic times associated with these incoherent dissipative processes should
be shorter than tunnelling lifetime, consequently coherent combination of wavefunctions over
grains cannot be written. Moreover, our diagrammatic analysis shows (see also [13]) that
higher order processes (|ti,i+a|4, etc) can be neglected when T > gδ. Such a condition allows
us to neglect ‘dressing’ of the tunnelling vertex ti,i+a by further tunnelling lines. Therefore,
the phase functional approach for granular materials can be justified if gδ � D/ l2, and the
temperature is sufficiently high, T � max(δ, gδ). We shall restrict our analysis to this regime.

2. Analysis of the model

The AES action shows important qualitative changes in the relevance of large phase fluctuations
as the coupling g is varied. Consider the metallic phase g � 1 in equation (2). Expanding



Coulomb blockade and quantum tunnelling in an array of metallic grains 4869

sin2(φ̃ij(τ ) − φ̃ij(τ
′)) in a power series, we observe 〈φ̃2

ij〉 ∼ g−1, thus inter-grain phase
fluctuations are Gaussian, and suppressed. The charge on an individual grain is not a well
defined quantity, rather it is shared by the entire system. As g is progressively reduced, the
phase fluctuations in equation (2) increase until finally one needs to take into account non-zero
winding numbers ki �= 0. In the extreme limit of g → 0, the AES model describes a system
of weakly coupled capacitors. The phase fluctuations are large, however the charge on an
individual grain is well-defined. Conduction now involves exciting a charge which results in an
activated temperature dependence of conductivity (σ ∼ g exp(−βEc)). Such considerations
lead us to examine whether for intermediate coupling between the grains, charge could be
shared by a finite number of grains. This would be an intermediate situation between the
extreme cases discussed above. In the remaining part of this paper, we choose a diagonal
capacitance matrix in equation (1), Cij ≈ 1

2Ec
δij, to keep our analysis simple.

We describe now the physical picture for the soft activation phase which emerges from our
analysis. Putting a single electron on an isolated grain costs Ec, while incoherent tunnelling
enables the charge to be shared between two or more grains. We show below that the parameter
γ ≡ g(1 − 2/(πg) ln(gβEc)) controls the suppression of winding numbers, and determines
the degree of charge delocalization. When γ � 1, the charge is effectively delocalized over
the entire system (the charging energy is exponentially suppressed). For γ � 1, a unit of
charge (electron) is shared among a finite number of grains. For simplicity we consider two
grains, and compare statistical weights associated with the charge localized on any single
grain P1 ∼ exp(−βEc), and the charge shared between the two grains, P2 ∼ γ exp(−βEc/2)
(β = 1/T ). Observe that the charging energy is halved upon hybridization1. Since a charge is
shared classically (incoherently) between two grains, it is equivalent to equal average voltage
on the grains, and thus two capacitors connected in parallel. The total capacitance is doubled,
and the charging energy is halved. If γ < exp(−βEc/2), the charge is unlikely to be shared
between the two grains. If on the other hand, γ > exp(−βEc/2), the electron is more
likely to live on both the grains. Thus the two-grain hybridization ‘puddle’ optimizing the
charging and tunnelling energies is formed. The optimum number N∗ of hybridized grains
sharing a single charge is determined by maximizing PN ∼ γ N−1 exp(−βEc/N), which gives
N∗ ∼ √

βEc/ ln(γ−1), hence σ ∝ g PN∗ ∼ exp(−2
√
βEc ln(γ−1)). This in essence is our

main result.
To calculate the conductivity, we use Kubo’s formula [3],

σ(ω) = ia2−d

ω
πg

∫ β

0
dτ α(τ)(1 − ei�nτ )〈cos(φ̃i,i+a(τ )− φ̃i,i+a(0)〉|�n→−iω+ε , (3)

where �n = 2π
β

n. Also of interest is the tunnelling density of states νi(ε) into the grain i:

νi(ε)

ν0T
= Im

[∫
dτ

eiεnτ

sin(πτT )
�̃i(τ )

∣∣∣∣
εn→−iε+δ

]
, (4)

where

�̃i = 〈exp(−i(φ̃i(τ )− φ̃i(0)))〉, and εn = 2π

β

(
n +

1

2

)
.

At this stage we are in a position to understand qualitatively the logarithmic temperature
dependence of the conductivity for g � 1 (derived in [1–3]). Since in this regime phase
fluctuations are small, we set all ki = 0 and expand St to quartic order in φij. Denoting the

1 This incoherent hybridization of charge density between grains has to be distinguished from wavefunction
hybridization (linear combination) in coherent, non-dissipative quantum mechanical systems.
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Gaussian part of the resulting AES action as the ‘free’ action, and considering the quartic bit
as ‘interaction’, one finds that the interaction renormalizes the tunnelling conductance as [3]

gren(τ − τ ′) ≈ g(1 − 〈φij(τ )φij(τ
′)〉), (5)

thus in d dimensions, gren(β) ≈ g(1 − 1
πgd ln(gβEc)). One infers from equation (5) a similar

temperature dependence for the conductivity σ as it is proportional to the effective tunnelling
conductance gren. This result suggests that when temperature T falls below T0 = Ece−πd(g−1),
a transition or crossover into an insulating phase might be expected. Note that the parameter
γ becomes smaller than one at temperature T1 = Ece−π(g−1)/2, which is parametrically much
larger than T0. We show that T1 marks the onset of soft activation behaviour.

Consider the AES model, equations (1) and (2). At low temperatures and for g � 1, phase
fluctuations on the grains could be large and non-Gaussian, so we expand the action about the
finite winding number phase changes (2π/β)kiτ and residual fluctuations φi [14]:

S[{ki}; {φi(ωn)}] = (2π)2

4βEc

∑
i

k2
i + πg

∑
|i−j|=a

|kij| +
β

4Ec

∑
i,n

ω2
nφi(ωn)φi(−ωn)

+
βg

2

∑
|i−j|=a

(|ωn+kij | + |ωn−kij | − 2|ωkij |)× φij(ωn)φij(−ωn) + O(φ4), (6)

where φi(τ ) = ∑
n φi(ωn) exp(iωnτ ). Since the bare conductance is large, g � 1, an

expansion to quadratic order in the residual fluctuations is justified. The first two terms of
equation (6) arise from finite-winding number (non-Gaussian) fluctuations, and directly lead
to quantization of charge. The remaining terms in equation (6) arise from perturbation about the
winding numbers. The competition of single-grain charging and hybridization at low enough
temperatures can be seen in the partition function Z2 = ∫

Dφ1 Dφ2
∑

k1,k2
exp(−S[k, φ]) of

a simple two-grain system. Since the tunnelling term depends only on the phase difference
between the two grains, we make a transformation to average phase φav = (φ1 + φ2)/2, and
relative phase φ = (φ1 − φ2). Integrating out the relative phase gives a winding number
dependent determinant. This we normalize against the determinant with no winding numbers:

Detφ[k12 = 0]

Detφ[k12]
=

∏∞
n=1

[
πn2

4βEc
+ g|n|]∏∞

n=1

[
πn2

4βEc
+ g

2 (|n + k12| + |n − k12| − 2|k12|)
]

=
|k12 |∏
n=1

[
1 +

4gβEc

nπ

] ∞∏
n=|k12|+1

[
πn2

4βEc
+ gn

πn2

4βEc
+ g(n − |k12|)

]
. (7)

For k12 � gβEc (a large g suppresses large values of k12), the determinant in equation (7) can
be simplified as

Detφ[k12 = 0]

Detφ[k12]
∼ 1

|k12|!
(

4gβEc

π

)|k12 | 4gβEc/π∏
n=|k12 |+1

n

n − |k12|

= (4gβEc/π)
|k12 |(4gβEc/π)!

(4gβEc/π − |k12|)!(|k12|!)2

∼ exp

[
2|k12| ln

(
4geβEc

π |k12|
)]
, (8)

where we used Stirling’s formula for the factorials. This result implies that relative phase
fluctuations enhance the tendency for phase slips between neighbouring grains. The effective
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action for the two grain system takes the form

S[k, φav] = (2π)2

4βEc

∑
i

k2
i +

2β

4Ec

∑
n

ω2
nφav(ωn)φav(−ωn) + πg|k12|

[
1 − 2

πg
ln

(
4geβEc

π |k12|
)]

= (2π)2

4βEc

∑
i

k2
i + πγ |k12| +

2β

4Ec

∑
n

ω2
nφav(ωn)φav(−ωn), (9)

where the effective parameter

γ = g

[
1 − 2

πg
ln

(
4geβEc

π |k12|
)]

(10)

is smaller than the renormalized tunnelling gren = g(1 − 1/(πdg) ln(gβEc)) that represents
the conductance at large bare coupling g at not too low temperatures. The main interest of this
paper is the regimeγ � 1. If 1 � γ � 1/(βEc), most contribution to single charge excitations
in the two-grain partition function comes from low winding number difference (|k12| ∼ O(1))
between the grains. On the other hand, when γ � 1/(βEc), large winding number differences
of the order of βEc become important. Therefore in this regime, the charge is localized on
either of the grains, with large charging energy of order Ec.

It is important to obtain the charge representation by summing over the winding numbers
with the use of the Poisson formula

Z2 =
∑
{qi }

∫ ∞

−∞
Dφav

dx1

2π

dx2

2π
ei2π

∑
i qi xi −S[x,φav ]. (11)

Integrating out x2 will yield the effective environment around x1:

Z2 ≈
∑
q1,q2

∫
dx1

∫
Dφav exp

{
− 2β

4Ec

∑
n

ω2
nφav(ωn)φav(−ωn)

}

×
(√

βEc

π
exp

{
γ 2

4βEc
− βEcq

2
2 − (2π)2

4βEc
x2

1 + i2πq1x1

}
× [�(x1) exp{iγβEcq2 − πγ x1} +�(−x1) exp{−iγβEcq2 + πγ x1}]
+

γ /2π

(γ /2)2 + (q2 + ix1π/βEc)2
exp

{
−2(2π)2

4βEc
x2

1 + i2πx1(q1 + q2)

})
. (12)

There are two qualitatively distinct contributions in equation (12). The first two terms represent
isolated charging of grain 2. If γ were vanishingly small, this would be the only contribution.
The last term represents hybridization of the two grains because of quantum tunnelling; the total
charge q1 + q2 is shared between the grains and the charging energy Ec is reduced to Ec/2.
Finally, integration over x1 gives the relative weights of the two processes in the partition
function as P1 ≈ exp(−q2

1βEc) for isolated charging, and P2 ≈ 2γ
π

exp(−(q1 + q2)
2βEc/2)

for charging of the hybridized grains.
The treatment so far considers residual relative phase fluctuations only to Gaussian order.

In the appendix, we present the results of path integral Monte Carlo calculations to support our
basic idea of charge sharing over two grains, even at low temperatures, where non-Gaussian
fluctuations are important. We also confirm that the temperature dependence of γ agrees well
with equation (10) at not too low temperatures. As the temperature is decreased further, non-
Gaussian fluctuations become important. The numerical calculations show that our physical
picture, that a competition of charging and tunnelling effects determines whether the charge
is shared between the two grains (with charging energy Ec/2) or localized on a single grain,
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still remains valid. More precisely, we find that the probability of sharing a charge between
two grains (here γ ) is an algebraically, and not exponentially, small function of temperature 2.

Consider now the case of N connected grains. Formally, it is simple enough to demonstrate
annexation of a single grain into an N-site puddle. The proof is by induction. Suppose that an
N-site puddle already exists (with statistical weight ∝ γ N ). Integration over a string of N − 1
contiguous neighbours of a grain i similarly gives a puddle of size N with charging energy
Ec/N , and a weight PN ≈ (

2γ
π
)N−1 exp(−(q1 + · · · + qn)

2βEc/N). Such an expansion in γ
only makes sense if 2γ /π < 1. For 2γ /π > 1, the optimum size of the puddle is divergent.
Consider the action of a single grain coupled to this puddle:

S[k, φ] = (2π)2 Nk2
N

4βEc
+
(2π)2k2

N+1

4βEc
+ πg|kN,N+1|

+
Nβ

4Ec

∑
n

ω2
n |φN (ωn)|2 +

β

4Ec

∑
n

ω2
n |φN+1(ωn)|2

+
βg

2

∑
n

(|ωn+kN ,N+1 | + |ωn−kN ,N+1 | − 2|kN,N+1|)|φN,N+1(ωn)|2. (13)

In terms of the centre of mass coordinate

φav = NφN + φN+1

N + 1
, (14)

and relative coordinate

φ = φN − φN+1, (15)

the action takes the form

S[k, φ] = (2π)2 Nk2
N

4βEc
+
(2π)2k2

N+1

4βEc
+ πg|kN,N+1|

+
β

4Ec

∑
n

ω2
n

[
(N + 1)|φav(ωn)|2 +

N

N + 1
|φ(ωn)|2

]

+
βg

2

∑
n

(|ωn+kN ,N+1 | + |ωn−kN ,N+1 | − 2|kN,N+1|)|φ(ωn)|2. (16)

Integrating out the relative phase renormalizes the bare coupling g in a manner similar to that
in equation (10),

γN,N+1 = g

[
1 − 2

πg
ln

(
2egβEc

π |kN,N+1|
N

N + 1

)]
. (17)

Note that the relevant γN,N+1 determining annexation of a single grain into an N-site puddle
is not too different from γ for a two grain system obtained in equation (10). Accordingly, the
condition for the suppression of large winding number difference changes from γ � 1/(βEc)

for two grains to the condition γ � N/(βEc) for N grains. Performing the summation over
kN and kN+1 in equation (16) using the Poisson summation formula again yields two terms that
correspond to separate charging of the puddle and grain, and charging of the larger (N +1)-site
puddle. The criterion for annexation is

2γN,N+1

π
exp[−βEc/(N + 1)] > exp[−βEc/N]. (18)

2 In equation (12) if we choose to normalize the partition function by the partition function for (q1 − q2) = 0, the
factor γ in the numerator of the second term of the equation should be replaced by γ 2. This does not affect our
physical picture of charge sharing.
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So far we have obtained the effective environment of a site i by integrating out a sequence
of N − 1 contiguous neighbours. Integrating over such ‘strings’ is somewhat different from
the actual requirement that one should consider an arbitrary puddle with N sites, and integrate
over all N phases. Since the number of bonds exceeds the number of sites in two and
three dimensions, it would be incorrect to consider the phase differences between bonds as
independent variables. The maximum number of independent phase differences in a puddle
of N sites is N − 1. Starting from an arbitrary site in the puddle, a non-self-intersecting
string of N − 1 bonds spans all N sites. The string, however, is not unique, hence in the
partition function Z N for N coupled sites, one must consider all possible self-avoiding string
configurations of N −1 links. From the theory of self-avoiding random walks [15], it is known
that the degeneracy N of such configurations is

N (N) ∼
{
(N − 1)1/6 z̃ N−1

3 , d = 3

(N − 1)1/3 z̃ N−1
2 , d = 2,

(19)

where z̃d is an effective coordination number that depends on the dimensionality and the
arrangement of grains. For a simple cubic lattice in three dimensions, z̃3 = 4.68, slightly less
than 6, which is the actual coordination number. Thus the contribution of an N-site puddle to
the partition function, say in three dimensions, is

Z N ≈ (N − 1)1/6
√
βEc

πN

(
2γ z̃3

π

)N−1

exp

(
−βEc

N
q2

N

)

×
∫

Dφ exp

(
− Nβ

4Ec

∑
n

ω2
nφ(ωn)φ(−ωn)

)
. (20)

The optimum size of the puddle is reached when N = N∗ ≈
√

βEcq2
N∗

ln(π/2z̃3γ )
, and the dominant

contribution to the partition function is

Z N∗ ≈ π

2γ z̃3
exp

(
−2

√
βEcq2

N∗ ln(π/2z̃3γ )

)
. (21)

This result is valid under the condition 1 � γ � 1/
√
βEc.

We now have the necessary ingredients for calculating the conductivity σ and tunnelling
density of states νi from equations (3) and (4). Calculation of the conductivity σ using
equation (3) requires evaluation of a two-point phase correlation function �̃i,i+a ,

�̃i,i+a = 〈exp(−i(φ̃i,i+a(τ )− φ̃i,i+a(0)))〉. (22)

The two points i and i + a should be chosen to lie in different puddles, for if they lie within
the same puddle, �̃ would simply describe the fluctuation of charge distribution inside a
puddle; this contributes little to the conductivity σ . This simplifies the evaluation of the two-
point phase correlation function to a product of two one-point phase correlation functions,
�̃i,i+a ≈ 〈exp(−i(φ̃i(τ )− φ̃i(0)))〉〈exp(i(φ̃i+a(τ )− φ̃i+a(0)))〉. The averaging in equation (22)
should be performed over winding numbers {ki} as well as the phase fluctuations {φi}. The
AES action in equation (13) after integrating over the relative residual phase fluctuations then
takes the form

S[{ki}; {φi(ωn)}] = (2π)2

4βEc

∑
i

Nik
2
i + πγ

∑
|i−j|=a

|ki − kj|

+
β

4Ec

∑
n

Niω
2
nφi(ωn)φi(−ωn) + · · · . (23)
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Upon performing the average, we obtain an expansion in increasing puddle size:

�̃i,i+a ≈
∑
{Ni}

(
2γ z̃d

π

)Ni+Ni+a−2

exp

{
−Ecτ

(
1

Ni
+

1

Ni+a

)}

×
∑
{qN }

exp

{
2τ Ec

(
qNi

Ni
− qNi+a

Ni+a

)
− βEc

(
q2

Ni

Ni
+

q2
Ni+a

Ni+a

)}
. (24)

To calculate the conductivity σ given by equation (3), we make the analytic continuation
�n → −iω + ε, and deform [3] the contour of integration in the following manner:
(0, β) → (0, i∞) + (i∞, i∞ + β) + (i∞ + β, β). For dc conductivity, we expand equation (3)
for small ω, and take the limit ω → 0. Performing the integration yields the conductivity

σ ∼ 2ga2−d
∑

Ni,Ni+a

∑
qNi ,qNi+a

(
2γ z̃d

π

)Ni+Ni+a−2

exp

(
−βEc

(
(qNi − 1)2

Ni
+
(qNi+a + 1)2

Ni+a

))
. (25)

Most of the contribution to equation (25) comes from two single-charge configurations
(qNi , qNi+a) = (1, 0), or (0,−1). In the former configuration, conductivity is dominated
by (Ni, Ni+a) = (1, N∗), while in the latter configuration, conductivity is dominated by

(Ni, Ni+a) = (N∗, 1), and N = N∗ ≈
√

βEc

ln(π/2z̃dγ )
as usual. The result is

σ ∼ 1

z̃d
a2−d exp

(−2
√
βEc ln(π/2γ z̃d)

)
. (26)

We can similarly obtain the tunnelling density of states:

ν(ε) ≈ πν0

2γ z̃d
cosh(βε) exp

(−2
√
βEc ln(π/2γ z̃d)

)
. (27)

3. Conclusion

We propose that our simple model of a regular array may explain soft activation behaviour
observed in real granular metals [4, 6–8]. In real granular metals, inter-grain tunnelling may
vary strongly between grains, but even in the presence of disorder, our physical mechanism
could be applicable. Firstly, for weak disorder, suppose the inter-grain coupling for the i th
tunnelling link has a distribution γi = γ 1+εi . Then for an N-site puddle, since the εi are
random, the tunnelling term

∏
i γi ∼ γ N+

∑
i εi ∼ γ N is not seriously modified, and our

conclusions hold. Secondly, as discussed in the context of granular superconductors [16],
theoretical calculations based on regular Josephson arrays seem to be relevant. The reason is
that even for a wide distribution of couplings, only a narrow range of couplings is relevant,
since (a) the extremely weak links can effectively be disregarded and (b) for links that are much
stronger than average, one can approximate the connected grains as one single grain. While the
tunnelling probability changes exponentially with length, the charging energy changes only
linearly, so the variation of charging energies is relatively small. The system then effectively
consists of such renormalized ‘grains’ linked by tunnelling of similar magnitude. Thirdly, if
conduction occurs through a few 1D paths, our result, being dimensionality independent, still
applies. The observations [7, 8], according to our picture, are robust even upon application
of strong magnetic fields (�10 T) and are independent of dimensionality [8]. Nevertheless,
further work needs to be done to understand properly granular metals with strong variation in
inter-grain couplings.

The AES approach we use, views conduction as a Fermi golden-rule type incoherent
tunnelling process. The obvious difference between our picture of soft activation and the
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Efros–Shklovskii [17] (ES) theory, which also gives a similar temperature dependence of
conductivity, is the on-site charging energy cost Ec in our model and lack of thereof in ES
theory. Furthermore, the mutual interaction of charges (and excitonic effects) on widely
separated grains plays no significant role in our analysis unlike in ES theory. Since the
soft activation mechanism involves only nearest-neighbour hopping in comparison with long-
distance variable range hopping, the magnetoresistance of soft activation here is expected to
be very weak, which is consistent with experiments [8]. Another possibility [4] considered
in the literature suggests that the observed soft activation could be an artifact of a special
distribution of grain sizes. Such a hope is belied by observation [7] of the same soft activation
in samples with a very narrow distribution of grain sizes. Also if we accept the conduction
process as proceeding through tunnelling of charge between neighbouring grains, there would
be little likelihood of finding the percolation paths in the wide range of temperatures through
appropriately sized grains, should they exist, as neighbours.

The relevance of our results as well as references [3, 12] should be explored beyond
carefully prepared granular arrays. Recently, a logarithmic temperature dependence of
conductivity in strong magnetic fields [18, 19] and granular (or domain) structure [20] has
been observed in certain underdoped cuprates. The insulating phase (even more underdoped)
in the same materials exhibited the soft activation behaviour [21], which may be due to the
mechanism proposed in this paper.

In conclusion, our analysis of transport in granular arrays at not too low temperatures
T � max(δ, gδ) in the framework of the AES approach shows that the transitions from a
logarithmic temperature dependence of conductivity for strong inter-grain coupling (g � 1)
to the soft activation behaviour for intermediate coupling (g � 1, 1 � γ � 1/

√
βEc) and

further to the hard activation behaviour for weak coupling g � 1 can be understood as arising
from the competition between Coulomb blockade and tunnelling. This analysis is strictly valid
for regular arrays and may be considered for experimental systems [4, 6–8].
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Appendix
Note added in proof. The main idea of our paper is that charge sharing among several grains
occurs at certain low temperatures, and the probability of sharing a charge between two grains
is not an exponentially small function of temperature. In this appendix we discuss various
arguments (in addition to the calculation in the main text) in support of this main idea, which
we developed after the original manuscript was submitted. We hope to publish a more detailed
discussion elsewhere.

We discuss in detail the situation of two connected grains to demonstrate again the essential
physics. For two grains, the AES action can always be expressed in terms of the average phase
φav = (φ1 + φ2)/2 and relative phase φ = (φ1 − φ2), where φ1 and φ2 are the phases of the
first and second grains.

S = 1

4Ec

∫ β

0
dτ

(
dφ1

dτ

)2

+
1

4Ec

∫ β

0
dτ

(
dφ2

dτ

)2

+ St(φ1 − φ2)

= 1

4(Ec/2)

∫ β

0
dτ

(
dφav

dτ

)2

+
1

4(2Ec)

∫ β

0
dτ

(
dφ

dτ

)2

+ St(φ). (28)
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The part of the action for the average phase is trivial and is easily transformed to the charge
representation. In doing so it is necessary to satisfy carefully correct Matsubara boundary
conditions of the original fields φ1 and φ2.

The crucial question is what the minimum charging energy of two grains is. Is the minimum
charging energy Ec/2 or still Ec as for a single grain? For a two-grain system, this issue can
be addressed by considering the phase correlation function for one of the grains,

C1(τ ) = 〈cos(φ1(τ )− φ1(0))〉
= 〈cos(φav(τ )− φav(0))〉〈cos((φ(τ )− φ(0))/2)〉. (29)

The part of the action for the average phase φav corresponds to the charging energy Ec/2
for the total charge (q1 + q2), quantized and equal to one. From this part, C1(τ ) gets a
contribution exp(−Ecτ/2). If g were zero, then the relative phase contribution to C1(τ ) is also
exp(−Ecτ/2), so that C1(τ ) = exp(−Ecτ ), in accordance with our expectation for isolated
grains. For a finite value of g, we demonstrate below that the correlation functions of the
relative phase fluctuations at large τ decrease only algebraically as a function of temperature,
and do not show a hard Coulomb gap [23]3. The gaplessness of the relative phase fluctuations
unambiguously proves that the minimum charging energy of the two grains is halved, Ec/2,
and associated only with the average phase. If instead the relative phase correlator were
gapped, with some effective charging energy E�

c , then the correlation function would decrease
exponentially at long-τ with the corresponding charging energy. Therefore the question about
the effective charging energy is equivalent to the question of considering the long-τ asymptotics
(or equivalently low temperatures) of the correlation function C1(τ ). The last statement is of
a general character, since the long-time (or low temperature) asymptotics always reveals the
lowest energy excitations (or configurations of theφ-field) of the system. Namely, if the charge
gap exists, this will become evident as an exponential decay of the corresponding correlation
function at long times. In the literature, the charge gap is occasionally related to the amplitude
of Coulomb blockade oscillations as a function of a gate voltage on a grain. In our case, the
charge gap is the cost of putting one excess charge on a grain. These two definitions are not
necessarily the same. For calculating the conductivity of the granular system, our definition
of the charge gap is the appropriate one.

Let us consider the relative phase correlator

C(τ ) = 〈cos(φ(τ )− φ(0))〉, (30)

which has been extensively studied in the literature, so a comparison with known results is
possible. In addition, C(τ ) � 〈cos(φ(τ ) − φ(0))/2〉, so if we can show that the large τ
behaviour of C(τ ) does not have a hard gap, then it is also true for 〈cos(φ(τ ) − φ(0))/2〉.
We claim (and we are not the first ones) that the correlation function C(τ ) of the single-
phase action decays, in fact, as a power-law, (T/T∗)2/ sin2(πT τ ), at very large τ and not
exponentially. Here T∗ is an energy scale exponentially small in g. Thus the correlation
function of relative phase fluctuations is not gapped for long times. This is a crucial point
because a temperature dependence of C(τ ) that is not exponentially small in temperature at
large τ invariably leads to a soft activation behaviour of conductivity at low temperatures (see
concluding remarks in this section). Several arguments based on general results of statistical
physics and mesoscopics as well as our numerical Monte Carlo simulations prove beyond
doubt that the correlation function C(τ ) decays algebraically (proportional to 1/ sin2(πT τ )).
First, note that the action for relative phase fluctuations is a one-dimensional field theory with

3 This work proposed an insulating phase with hard activation gap at low temperatures. It seems that the approximation
of non-interacting instantons used in the work [23] (and in some others, e.g. [1]) may not be valid, as for instance has
been discussed in [14].
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Figure A.1. ln C(τ ) versus ln τ for g = 1 (red) and g = 1.5 (blue), at β = 768. The data (solid
curves) show a crossover from logarithmic behaviour C reglog (dotted curves) to the power-law
behaviour Calg (dashed). Discrepancies at small τ are due to discretization error. Note that C reglog

is not exactly a power law (or a straight line on a log–log plot): the cosec squared flattens out at
τ ∼ β/2.

a long-range interaction, gT 2/ sin2(πT τ ), in imaginary time. A general theorem of statistical
physics due to Griffiths [22] states that the correlation function C(τ ) cannot decay faster than
the interaction, gT 2/ sin2(πT τ ). The exponential decay is much faster than algebraic decay
and therefore not possible. Second, it is widely recognized in the mesoscopics literature that
at low temperatures the tunnelling to a quantum dot is dominated by so-called inelastic (or
elastic) cotunnelling processes [24, 25]. In the case of two grains, cotunnelling processes which
are second order processes in the conductance g correspond to the creation of electron–hole
pairs on both grains. These processes are the lowest-energy gapless processes which can be
closely associated with long-τ behaviour of C(τ ), once again this demonstrates that the charge
gap at low temperatures is effectively zero. In fact, the picture of the charge sharing can be
equally well discussed in terms of the balance between Coulomb blockade and cotunnelling
processes for a finite set of grains. Our results concerning cotunnelling processes are somewhat
non-trivial, because we describe these processes in terms of the parameter γ (T ) for g � 1
(unlike the originally considered case of g � 1 of [24, 25]). Third, we undertook numerical
simulations of the single-phase AES action using the path integral Monte Carlo method. It
is possible to calculate directly by this method, without any approximations, not only the
correlation function C(τ ) but also the parameter γ as a function of g and T . Numerical results
show clearly that the correlation function behaves as (T/T∗)2/ sin2(πT τ ) in the large-τ limit.
Note that a rough estimate of C(τ ) as C(τ ) ∼ [

∑
k cos(2πkT τ ) exp(−S(k))]/ exp(−S(k))

using equation (9) gives C(τ )∼ sinh2(πγ /2)/[sinh2(πγ /2)+sin2(πT τ )]. For small values of
γ , the Gaussian approximation is inaccurate, nevertheless the Lorentzian long time behaviour
of C(τ ) inferred from equation (9) clearly anticipates the (T/T∗)2/ sin2(πT τ ) result of exact
numerical calculations, with γ ∼ T/T∗ � 1 and large τ .

In what follows we summarize the results of the path integral Monte Carlo simulations (the
description of the method and further results will be published elsewhere [26]). In figure A.1
we present the correlation function C(τ ) for g = 1 and 1.5. One can see clearly that at
short imaginary times—τ , C(τ ) = 1 − 1/(πg) ln(gEc/2T ), which is consistent with gren

calculated in equation (5) ignoring winding numbers and various others [3]. At long times—
τ , in figure A.1, the correlation function decays as 1/ sin2(πT τ ).
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gren with respect to g.
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Figure A.3. γ versus β for g = 32. Solid black curve: Monte Carlo calculation. Dashed blue
curve: γ (T ) in equation (31) obtained by considering Gaussian fluctuations. Top red curve: gren(T )
extracted from C(τ ) with τ proportional to β. Bottom red curve: gren(T ) with adjusted cutoff,
gren(T ) = [g − (1/π) ln(constant × Ec/T )]. Clearly, (1/π) ln T is not in good agreement with
Monte Carlo results for any adjustment of the cutoff. The Gaussian approximation gives a much
better agreement with Monte Carlo results.

The detailed behaviour of the parameter γ is given in figure A.2 as a function of g and
in figure A.3 as a function of temperature T . The exact calculation of the determinant of the
residual fluctuations in the Gaussian approximation gives instead of πγ |k12| in equation (9)
the following expression:

πγ |k| = πg|k| − ln
�

(
1 + k + x−√

x
√

x+4k
2

)
�

(
1 + k + x+

√
x
√

x+4k
2

)
�(1 + k)2�(1 + x)

, (31)
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where x = gEc

πT and for brevity we denote the relative winding number k12 ≡ k as k. This
expression is more precise than the expression (see equation (10)) calculated using Stirling’s
approximation.

Figure A.2 compares the derivative of the action,

��1(g) = ∂[S(k = 1, g)− S(k = 0, g)]/∂g, (32)

evaluated numerically, with various analytic approximations. The blue dotted curve is the
Gaussian approximation of equation (31) and the blue dashed curve is equation (10), which
can be shown to follow from equation (31) using Stirling’s approximation for the gamma
functions. The red dashed curve corresponds to setting γ (T ) = gren.

Figure A.3 compares γ (T ), calculated numerically, with the Gaussian approximation in
equation (31) (blue dashed curve), and gren(T ) calculated from C(τ ), τ ∝ β, (top red curve)
and gren(T ) with an adjustable cutoff (lower red curve), as a function of temperature.

We thus observe that the renormalizations of the quantities gren and γ as a function of
temperature are different for large g � 1. Although this observation is not essential on
its own for the charge sharing mechanism, the numerical simulation shows directly that the
renormalization of γ is stronger (see below). The stronger renormalization of γ in comparison
with gren should presumably be associated with nearly zero-modes of residual fluctuations
which exist around winding number trajectories. Namely, the Gaussian fluctuations are
stronger around winding number trajectories than around non-winding (k = 0) trajectories
because the square averaged fluctuations for zero modes (for n � k) are much stronger
〈φ2

n〉zm = 4Ec/(πT ) than 〈φ2
n〉 ∼ 1/g for simple Gaussian residual fluctuations. Note that

zero-mode fluctuations need to be considered beyond Gaussian approximation for Ec � T ,
because 〈φ2

n〉zm becomes easily much larger than (2π)2. Therefore fluctuations beyond
logarithmic renormalizations are naturally expected and do occur as seen numerically.

We end with two remarks. Since the temperature dependence of the relative phase
correlator at large τ is not an exponentially small function of temperature, but only
a power law, optimizing the probability of a charge shared among N grains, PN ∼
γ (T )N−1 exp(−Ec/NT ) ≈ exp(−2

√
Ec ln(γ−1)/T ), gives a temperature dependence of the

exponent that is always weaker than Arrhenius’ law, P ∼ exp(−E∗
c /T ). Thus the temperature

dependence of the optimum probability PN is the soft activation behaviour. Second, it has not
escaped our attention that even for g < 1, inelastic cotunnelling processes should make the
charge sharing possible [26].
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